Discover Classes. Earn Rewards.
Price:
$3,950 8 seats
Start Date:

Tue, Sep 11, 6:30pm - Nov 15, 9:30pm (20 sessions)

Next start dates (2)

Location:
Downtown, Washington, D.C.
1133 15th St NW 8th Fl
Btwn L & M Streets NW
Washington, District of Columbia 20005
(Map)
Share:
Important:
A computer will not be provided
Class Level: All levels
Age Requirements: 18 and older
Average Class Size: 20

What you'll learn in this data science course:

This is a part time course.  

In this course, students learn to build robust predictive models, test their validity, and clearly communicate resulting insights.

Unit 1: Research Design and Exploratory Data Analysis

What is Data Science 
  • Describe course syllabus and establish the classroom environment 
  • Answer the questions: "What is Data Science? What roles exist in Data Science?" 
  • Define the workflow, tools and approaches data scientists use to analyze data
Research Design and Pandas 
  • Define a problem and identify appropriate data sets using the data science workflow 
  • Walkthrough the data science workflow using a case study in the Pandas library 
  • Import, format and clean data using the Pandas Library
Statistics Fundamental I 
  • Use NumPy and Pandas libraries to analyze datasets using basic summary statistics: mean, median, mode, max, min, quartile, inter-quartile, range, variance, standard deviation and correlation 
  • Create data visualization – scatter plots, scatter matrix, line graph, box blots, and histograms – to discern characteristics and trends in a dataset 
  • Identify a normal distribution within a dataset using summary statistics and visualization
Statistics Fundamental II 
  • Explain the difference between causation vs. correlation 
  • Test a hypothesis within a sample case study 
  • Validate your findings using statistical analysis (p-values, confidence intervals)
Instructor Choice 
  • Focus on a topic selected by the instructor/class in order to provide deeper insight into exploratory data analysis
Unit 2: Foundations of Data Modeling

Introduction to Regression 

  • Define data modeling and linear regression 
  • Differentiate between categorical and continuous variables 
  • Build a linear regression model using a dataset that meets the linearity assumption using the scikit-learn library
Evaluating Model Fit 
  • Define regularization, bias, and errors metrics; 
  • Evaluate model fit by using loss functions including mean absolute error, mean squared error, root mean squared error 
  • Select regression methods based on fit and complexity
Introduction to Classification 
  • Define a classification model 
  • Build a K–Nearest Neighbors using the scikit–learn library 
  • Evaluate and tune model by using metrics such as classification accuracy ⁄ error
Introduction to Logistic Regression 
  • Build a Logistic regression classification model using the scikit learn library 
  • Describe the sigmoid function, odds, and odds ratios and how they relate to logistic regression 
  • Evaluate a model using metrics such as classification accuracy ⁄ error, confusion matrix, ROC ⁄ AOC curves, and loss functions
Communicate Results from Logistic Regression 
  • Explain the tradeoff between the precision and recall of a model and articulate the cost of false positives vs. false negatives. 
  • Identify the components of a concise, convincing report and how they relate to specific audiences ⁄ stakeholders 
  • Describe the difference between visualization for presentations vs. exploratory data analysis
Flexible Class Session 
  • Focus on a topic selected by the instructor ⁄ class in order to provide deeper insight into data modeling
Unit 3: Data Science in the Real World

Decision Trees and Random Forest 
  • Describe the difference between classification and regression trees and how to interpret these models 
  • Explain and communicate the tradeoffs of decision trees vs regression models 
  • Build decision trees and random forests using the scikit-learn library
Natural Language Processing 
  • Demonstrate how to tokenize natural language text using NLTK 
  • Categorize and tag unstructured text data 
  • Explain how to build a text classification model using NLTK
Dimensionality Reduction 
  • Explain how to perform a dimensional reduction using topic models 
  • Demonstrate how to refine data using latent dirichlet allocation (LDA) 
  • Extract information from a sample text dataset
Working with Time Series Data 
  • Explain why time series data is different than other data and how to account for it 
  • Create rolling means and plot time series data using the Pandas library 
  • Perform autocorrelation on time series data
Creating Models with Time Series Data 
  • Decompose time series data into trend and residual components 
  • Validate and cross-validate data from different data sets 
  • Use the ARIMA model to forecast and detect trends in time series data
The Value of Databases 
  • Describe the use cases for different types of databases 
  • Explain differences between relational databases and document-based databases 
  • Write simple select queries to pull data from a database and use within Pandas
Moving Forward with your Data Science Career 
  • Specify common models used within different industries 
  • Identify the use cases for common models 
  • Discuss next steps and additional resources for data science learning
Flexible Class Session 
  • Focus on a topic selected by the instructor⁄class in order to provide deeper insight into data science in the real world
Final Presentations 
  • Present final presentation to peers, instructor, and guest panelists who will identify strengths and areas for improvement
School Notes:
For students enrolling in 12 week part time and immersive classes, it is not recommended that you book more than one class simultaneously.

Still have questions? Ask the community.

If you can't make it to a class/workshop, please email us at [email protected] at least 7 days before the scheduled event date. No refunds will be given after this timeframe.

Map

Google Map
General Assembly


All classes at this location
Start Dates (3)
Start Date Time Teacher # Sessions Price
6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven 20 $3,950
This course consists of multiple sessions, view schedule for sessions.
Thu, Sep 13 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Tue, Sep 18 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Thu, Sep 20 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Tue, Sep 25 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Thu, Sep 27 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Tue, Oct 02 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Thu, Oct 04 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Tue, Oct 09 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Thu, Oct 11 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Tue, Oct 16 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Thu, Oct 18 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Tue, Oct 23 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Thu, Oct 25 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Tue, Oct 30 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Thu, Nov 01 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Tue, Nov 06 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Thu, Nov 08 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Tue, Nov 13 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Thu, Nov 15 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
10:00am - 5:00pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven 10 $3,950
This course consists of multiple sessions, view schedule for sessions.
Sat, Oct 13 10:00am - 5:00pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Sat, Oct 20 10:00am - 5:00pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Sat, Oct 27 10:00am - 5:00pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Sat, Nov 03 10:00am - 5:00pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Sat, Nov 10 10:00am - 5:00pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Sat, Nov 17 10:00am - 5:00pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Sat, Dec 01 10:00am - 5:00pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Sat, Dec 08 10:00am - 5:00pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Sat, Dec 15 10:00am - 5:00pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven 23 $3,950
This course consists of multiple sessions, view schedule for sessions.
Thu, Nov 15 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Tue, Nov 20 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Thu, Nov 22 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Tue, Nov 27 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Thu, Nov 29 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Tue, Dec 04 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Thu, Dec 06 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Tue, Dec 11 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Thu, Dec 13 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Tue, Dec 18 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Thu, Dec 20 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Thu, Jan 03 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Tue, Jan 08 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Thu, Jan 10 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Tue, Jan 15 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Thu, Jan 17 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Tue, Jan 22 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Thu, Jan 24 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Tue, Jan 29 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Thu, Jan 31 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Tue, Feb 05 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven
Thu, Feb 07 6:30pm - 9:30pm I. Corneillet, A. Ahuja, S. Weidman, A. Donigian, S. Ozdemir, M. van de Ven

Benefits of Booking Through CourseHorse

Booking is safe. When you book with us your details are protected by a secure connection.
Lowest price guaranteed. Classes on CourseHorse are never marked up.
This class will earn you 39500 points. Points give you money off your next class!
Questions about this class?
Get help now from a knowledge expert!
Questions & Answers

Get quick answers from CourseHorse and past students.

Reviews of Classes at General Assembly

(1614 Reviews)
loading...

School: General Assembly

General Assembly

General Assembly is a pioneer in education and career transformation, specializing in today’s most in-demand skills. The leading source for training, staffing, and career transitions, we foster a flourishing community of professionals pursuing careers they love.

What began as a co-working space in...

Read more about General Assembly

CourseHorse Approved

This school has been carefully vetted by CourseHorse and is a verified DC educator.

Ready to take this class?
BOOK NOW
Taking this class for work? Get exclusive perks & discounts for free.
Loading...